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Abstract:

This is a follow-up to a previous paper that describes the math behind arbitrary precision
numbers, see [7]. First of all the original paper was written back in 2013 and quite a few
things had happens since then, secondly, I have come across some other interesting
methods to do the logarithm function calculation. The paper describes in more detail how
to do In(x) (loge(x)) calculation with arbitrary precision and outlines some traditional
methods but also introduces an improved version that makes the calculation 10-20 times
faster than the original method use in the author own arbitrary precision math packages.

Introduction:

Usually, when implementing arbitrary precision math packages you would use the
standard Taylor series calculation for calculating In(x) (loge(x)) for arbitrary precisions.
The Taylor series for In(x) is not particularly fast in its raw form. However, you can
apply techniques that significantly improved the performance of the method. We will
discuss the various method for calculating In(x) and elaborate on the techniques like
clever argument reduction and coefficient scaling to improve the performance of the
method. Furthermore, we will analyze the Newton and Halley method for calculating
In(x) and finally go over the AGM method, which by far is the fastest method of them all.

As usual, we will show the actual C++ source for the computation using the author’s own
arbitrary precision Math library, see [1].

This paper is part of a series of arbitrary precision papers describing methods,
implementation details, and optimization techniques. These papers can be found on my
website at www.hvks.com/Numerical/papers.html and are listed below:
1. Fast Computation of Math Constants in arbitrary precision. HVE Fast Gamma, Beta
Error, and Zeta functions for arbitrary precision.
2. Fast Gamma, Beta, Error, and Zeta functions for arbitrary precision. HVE Fast
Gamma, Beta, Error, and Zeta functions for arbitrary precision.
3. Fast Square Root & Inverse calculation for arbitrary precision math. HVE Fast
Square Root & inverse calculation for arbitrary precision
4. Fast Exponential calculation for arbitrary precision math. HVE Fast Exp() calculation
for arbitrary precision
5. Fast logarithm calculation for arbitrary precision math. HVE Fast Log() calculation for
arbitrary precision
6. Practical implementation of Spigot Algorithms for Transcendental Constants.
Practical implementation of Spigot Algorithms for transcendental constants
7. Practical implementation of  algorithms. HVE Practical implementation of PI
Algorithms
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8. Fast Trigonometric function for arbitrary precision. HVE Fast Trigonometric
calculation for arbitrary precision

9. Fast Hyperbolic functions for arbitrary precision. HVE Fast Hyperbolic calculation for
arbitrary precision

10. Fast conversion from arbitrary precision number to a string. HVE Fast conversion
from arbitrary precision to string

11. Fast conversion from a decimal string to an arbitrary precision number. HVE Fast
conversion from string to arbitrary precision

Change Log

27 February 2023. Cleaning up the document and correcting minor issues.
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The Arbitrary precision library

If you already are familiar with the arbitrary precision library, you can skip this section.

To understand the C++ code and text we have to highlight a few features of the arbitrary
precision library where the class name is float precision. Instead of declaring, a variable
with a float or double you just replace the type name with float precision. E.g.

float precision f; // Declare an arbitrary precision float with 20 decimal digits precision

You can add a few parameters to the declaration. The first is the optional initial value and
the second optional parameter is the floating-point precision. The native type of a float
has a fixed size of 4 bytes and 8 bytes for double, however since this precision can be
arbitrary we can declare the wanted precision as the number of decimal digits we want to
use when dealing with the variable. E.g.

float precision fp(4.5); // Initialize it to 4.5 with default 20 digits precision
float_precision fp(6.5,10000); // Initialize it to 6.5 with a precision of 10,000 digits

The precision of a variable can be dynamic and change throughout the code, which is
very handy to manipulate the variable. To change or set the precision you can call the
method .precision() E.g.

f.precision(100000); // Change the precision to 100,000 digits
f.precision(fp.precision()-10); // Lower the precision with 10 digits
f.precision(fp.precision()+20); // Increase precision with 20 digits

There is another method to manipulate the exponent of the variables. The method is
called .exponent() and returns or sets the exponent as a power of two exponents (same as
for our regular build-in types float and double) E.g.

f.exponent(); // Return the exponent as 2°
f.exponent(0) // Remove the exponent
f.exponen(16) // Set the exponent to 2!¢

There is a second way to manipulate the exponent and that is the class
method. .adjustExponent(). This method just adds the parameter to the internal variable
that holds the exponent of the float precision variable. E.g.

f.adjustExponent(+1); // Add 1 to the exponent, the same as multiplying the number with 2.
f.adjustExponent(-1); // Subtract 1 from the exponent, the same as dividing the number with 2.

This allows very fast multiplication of division with a number that is any power of two.

The method .iszero() returns true if the float precision number is zero otherwise false.
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There is an additional method() but I will refer to the reference for the user manual to the
arbitrary precision math package for details.

All the normal operators and library calls that work with the built-in type float or double
will also work with the float precision type using the same name and calling parameters.

Internal format for float_precision variables

For the internal layout of the arbitrary precision number, we are using the STL vector
library declared as:

vector<uintmax_t> mBinary;

uintmax_t is mostly a 64-bit quantity on most systems, so we use a vector of 64-bit
unsigned integers to store our floating-point precision number.

The method .size() returns the number of internal vector entries needed to hold the
number.

The Binary format mBinary
o— —e o ®
Integer Fraction part

part

= The binary format consist of an unlimited number of 64bit unsigned integer blocks.
= One blockin front of the period sign *’ (the integer part of the number)
= Zero or more blocks of fractions after the “’ (the fraction sign of the number)
= The binary number is storedin a STL vector class and defined
= vector<uintmax_t>mBinary;
= There is always one entry in the mBinary vector.
= Size of vector is always >=1
= A Number is always stored normalized. E.g. the integer part is 1 or zero
= The sign, exponent, precision, rounding mode is stored in separate class fields.

There are other internal class variables like the sign, exponent, precision, and rounding
mode but these are not important to understand the code segments.

Normalized numbers

27 February 2023. www.hvks.com/Numerical/arbitrary precision.html Page 5



Fast Logarithm function for Arbitrary Precision number

A float_precision variable is always stored as a normalized number with a one in the
integer portion of the number. The only exception is zero, which is stored as zero.
Furthermore, a normalized number has no trailing zeros.

For more details see [1].

27 February 2023.
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Log(x)

There are quite a few ways you can calculate log(x) in arbitrary precision. Traditional
Taylor series expansion has been used however, another method involving AGM
(Arithmetic-Geometric Mean) has shown to be an efficient method of calculating log(x):
This chapter will be examined the:

1) Log(x) using Taylor series, argument reduction, and coefficient scaling.
2) Using Newton 2™ order method to calculate log(x)

3) Using Halley 3™ order method to calculate log(x)

4) Using AGM algorithm to calculate log(x)

The most common one for arbitrary precision libraries is the standard Taylor series
expansion method but as will be shown this is not the preferred choice if you want
performance. When we say log(x) with mean the natural logarithm is denoted as In(x).
For other bases, we will explicitly refer them to log10(x) or log2(x) to avoid any
confusion.

Log(x) using the Taylor series

For the function, log(x) or the natural logarithm In(x) we could use the corresponding
Taylor series for In(x) as defined by:

(-1 (-1t
3 4

—1)2
In(x) =(x—1)—(x21) + + - (1)
Which is valid for 0<x<2. The limit range is usually not a problem since we can use
argument reduction to get x within the limit. The series however converge slowly to In(x)
and is not suitable for arbitrary precision. Instead, most implementations use the inverse
hyperbolic tangent function:

x—1

P+ ()5 + ) (2)

5 *x+1

In(x) = 2 - artanh (i—:) = Z(z—: + § (x+1

Which is valid for any real number x>0.

This series converges with reasonable speed if x is small.

Example 1
Using x=2 we get after 15 Taylor series the result of In(2)= 0.693147180559945
Ln(x) Original X Reduced
X= 2 2
Taylor reductions= 0
Terms zn Term Sum Ln(x) Error
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1 3.3333E-01 0.333333333333333 0.666666666666667 2.65E-02
2 3.7037E-02 0.345679012345679 0.691358024691358 1.79E-03
3 4.1152E-03 0.346502057613169 0.693004115226337 1.43E-04
4 4.5725E-04 0.346567378666144 0.693134757332288 1.24E-05
5 5.0805E-05 0.346573023695414 0.693146047390827 1.13E-06
6 5.6450E-06 0.346573536879893 0.693147073759785 1.07E-07
7 6.2723E-07 0.346573585128006 0.693147170256012 1.03E-08
8 6.9692E-08 0.346573589774121 0.693147179548241 1.01E-09
9 7.7435E-09 0.346573590229622 0.693147180459244 1.01E-10
10 8.6039E-10 0.346573590274906 0.693147180549812 1.01E-11
11 9.5599E-11 0.346573590279458 0.693147180558916 1.03E-12
12 1.0622E-11 0.346573590279920 0.693147180559840 1.05E-13
13 1.1802E-12 0.346573590279967 0.693147180559934 1.10E-14
14 1.3114E-13 0.346573590279972 0.693147180559944 1.33E-15
15 1.4571E-14 0.346573590279972 0.693147180559945 0.00E+00

That is not too bad, however, if we change the argument to 10 then we need 75 Taylor’s
terms to get the result and if we use x=0.1 then we also need 75 Taylor terms. With x=1.1
you only need six Taylor Terms.

This led to the observation that the number of Taylor’s terms needed depends heavily on
the argument to In(x) and how close it is to one.

Argument Reduction

We prefer to have our x in a small neighborhood around one to ensure that the Taylor
series converges more quickly. We can accomplish that using a technique called
argument reduction to work with a smaller number to get a faster converging to In(x)
using fewer terms of the Taylor series.

We can use the identity:
In(x) =In((vx)*) = 2-In (V) (3)

to reduce the argument by repeating take the square root of x until it gets closer to 1. If
1

we take k square roots, reducing x => x2* and get closer to one we can then after the
Taylor iterations multiply the result with 2¥to find the correct value of In(x).

This makes sense to reduce the need for Taylor terms since each Taylor terms involve a
division, which is very time-consuming in arbitrary precision arithmetic.

Example 2:
If using used the previous example 1 and reducing the argument twice from two to
1.1892... we only need 7 Taylor terms to get the same result as before, saving eight
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Taylor terms but gaining two squaring and multiplication of 22 =4 at the end. However,
overall huge savings since we have avoided eight time-consuming divisions in Taylor’s

terms.

Ln(x) Original X Reduced

X= 2 1.189207115

Taylor reductions= 2

Terms Zn Term Sum Ln(x) Error

1 8.6427E-02 0.086427233725890 0.691417869807118 1.73E-03
2 6.4558E-04 0.086642427936652 0.693139423493214 7.76E-06
3 4.8223E-06 0.086643392394074 0.693147139152589 4.14E-08
4 3.6021E-08 0.086643397539913 0.693147180319306 2.41E-10
5 2.6906E-10 0.086643397569809 0.693147180558474 1.47E-12
6 2.0098E-12 0.086643397569992 0.693147180559936 9.33E-15
7 1.5013E-14 0.086643397569993 0.693147180559945 0.00E+00

If we use an eight-times reduction we get the same results after just four Taylors terms.

Ln(x) Original X Reduced

X= 2 1.002711275

Taylor reductions= 8

Terms zn Term Sum Ln(x) Error

1 1.3538E-03 0.001353802259956  0.693146757097522 4.23E-07
2 2.4812E-09 0.001353803087030 0.693147180559489 4.56E-13
3 4.5475E-15 0.001353803087031 0.693147180559955 -9.21E-15
4 8.3346E-21 0.001353803087031 0.693147180559955 -9.21E-15

The issue with arbitrary precision

17 Taylor’s terms to reach a result do not seem so bad at a first glance. However, when
we are dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we
suddenly have to perform a lot more Taylor terms to find our result.

Now it would come in very handy if we could estimate the needed number of Taylor
terms for a given argument so we can optimize the use of argument reduction. Luckily,

this can be estimated for In(x). The n™ -Taylor term for In(x) is given by:

2n—-1

x—1

. ,Where z = — (4)
2n—-1 x+1
2n—-1
Generally, we can stop the iteration when 2 - ZZn—l < 107P Where P is the decimal
precision. Now taking In on both sides, rearranging and reducing we get:
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In <2 ZZ;n__11> =In(107?) => (2n — 1) In(z) —In(n) + In(2) = —P - In(10) =>

In(n) and In(2) can be ignored for largep =~ (2n—1)In(z) = —P -In(10) =>

_ l —P-In(10)
n_z( In(z) +1) (5)

If we use the example of x=2 we get the following estimated Taylor’s terms as a function
of precision without argument reduction.

x/precision 10 16 100 1,000 10,000 100,000 1,000,000
2
11 17 105 1,048 10,480 104,796 1,047,952

Now to see the effect of argument reduction on improving the Taylor series we have
recorded the amount of Taylor terms needed for various argument reductions from 1 to 8
on a random floating-point number between 1.xxx and 1.999. From the table, we see that
the reduction in numbers of Taylor terms varies more than 8-10 fold between 0 as the
reduction factor to a reduction factor of 8.

The Auto reduction is the number of Taylor terms when we automatically find a
reasonable reduction factor. Most of the time it varies between 8-10 reductions.

The number of Taylor Terms.
Digits 10 100 1,000 10,000 100,000

Auto Red. 4 16 151 1,416 14,397
0 Red 17 65 747 9,283 104,166
1 Red. 12 48 519 6,024 65,054
2 Red. 9 38 397 4,431 46,887
3 Red. 7 32 321 3,500 36,587
4 Red. 6 27 270 2,892 29,987
5 Red. 5 24 233 2,464 25,403
6 Red. 5 21 205 2,146 22,034
7 Red. 4 19 183 1,901 19,454
8 Red. 4 18 151 1,706 15,762

Finding a reasonable reduction factor.

As can be seen in the above table a higher reduction factor greatly improved the
performance. However, how many times reduction is adequate? That at least x should
be reduced to some arbitrary number. [ use 1.001 as the target for ref [1]
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First, eliminate the exponent of x reducing it to a number > 1x < 2.

1
Solve x2k < limit =>

1 1
In <x2k> < In(limit) => — ox ‘In(x) < In(limit) =>

In(x) n(x)
I imin <2 =~ n <ln(l )> /In(2) <k

A reasonable number for the limit is 1.001 If x=2 then you would need to perform 10
reductions before summing the Taylor terms. After summarizing the Taylor terms, you
would need to multiply that number by 25! to get the correct value for In(x).

The performance table below shows the effect of using increasingly higher reduction
factors.

All measures are in milliseconds

Digits 100 1,000 10,000 1,000,000
Auto Red. 1.57 26 14,625 739,917
0 Red. 3.67 113 93,300 5719,74
1 Red. 2.75 99 62,262 3180,440
2 Red. 24 59 47,735 2316,740
3 Red. 1.25 48 36,048 2045,750
4 Red. 1 43 29,021 1,500,050
5 Red. 0.91 36 24,548 1309,860
6 Red. 1 34 21,391 1,148,780
7 Red. 0.91 31 19,182 957,246
8 Red. 0.91 29 16,657 864,200

As you can see for large precisions, you will benefit even more by increasing the
reduction factor.

Guard Digits

When summarizing a Taylor series as In(x) you need quite a lot of summarizing and that
will produce round-off errors.

For our In(x) function, we use a simple guard digits calculation that we add

2 + [log10(precision)] as extra guard digits as the working precision.
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Source log(x) using Taylor series
float_precision log(const float_ precision& x)
{
size t precision = x.precision() + 2 + (size t)ceil(logl@(x.precision()));
eptype expo;
int i, k, no_reduction;
size t loopcnt = 1;
double zd;
float precision logx, z(x), zsq, terms;
const float precision c1(1);

if (x <= float_precision(®))
{

throw float_precision::domain_error();

}

expo = z.exponent(); // Get original exponent
z.exponent(0); // Set exponent to zero getting z between [1..2)

// Check for argument reduction and increase precision if necessary
zd = (double)z;

no_reduction = (int)ceil(log(log(zd) / log(1.001)) / log(2));
no_reduction = std::max(no_reduction, 0);

precision += no_reduction;

// adjust precision to allow correct rounding of result
z.precision(precision);

zsq.precision(precision);

terms.precision(precision);

logx.precision(precision);

// The fraction part is [1...1.1) (base 10) at this point
// Reduce z to less than 0.001so range is now [1..1.001)
for (k = @; k < no_reduction; ++k)

z = sqrt(z);
// number now in [1...1.001). Setup the iteration
z=(z -cl) / (z + cl);
zsq = z.square();

logx = z;
// Iterate using Taylor series 1n(x) == 2(z + z~3/3 + z"5/5 ... )
for (i = 3;; i += 2, ++loopcnt)

{

z *= zsq;

terms = z / float _precision(i);

if (logx + terms == logx)
break;

logx += terms;

}

// Adjust the result from the reduction by multiplying it with 2~(k+1)
logx *= float precision(pow(2.0, (double)(k + 1)));
if (expo != @) // Adjust for original exponent y

{// Ln(x"y) = Ln(x) + Ln(2"y) = Ln(x) + y * 1n(2)

logx += float precision(expo) * _float_table(_LN2, precision + 1);

}
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// Round to same precision as argument and rounding mode
logx.mode(x.mode());

logx.precision(x.precision());

return logx;

}

Further Improvement of the methods?

There is not a lot of things you can do to improve the In(x) algorithm. However, consider
the Taylor series expansion of In(x):

In(x) =2(i—:+§(i—:)3+§(i_:)5+...) (6)

If we use z = 2= we get:
x+1
In(x) =2(Z+§Z3+§Z5+'“) (7)

As was the case when we discuss this in the exponential function paper, the issue is the
division for each term. Since division is many times slower than calculation and addition.
You could group two or more Taylor terms (sometimes referred to as coefficient scaling)
and reduce the number of divisions. Consider the n’th and the n+1 term:
xTL xn+2
Sl e R

Moreover, group them:

(n+2)x™ N n-x"?
“m+2)n n(n+2)7

>

(n+2)x"+n-x"t?
n(n+ 2)

Then you have replaced one division with three extra multiplication. The (n+2) can be
done using a 32-bit or 64-bit integer since you never get to do many Taylor terms in real
life. There is no need to stop at just grouping two terms together you can do that for three
terms:

(n+2)(n + 4)x™ + n(n + Hx™?! + n(n + 2)x™+?
nn+2)(n+4)

Saving two divisions, however, gaining a few more addition and multiplications.
Because arbitrary precision division is, much more time-consuming to calculate it will be

highly advantageous to implement this grouping of Taylor terms. With four to five terms
grouped, you get a speedup of 2-3 times compared to not grouping terms together.
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Iterations Source for 5 terms scaling of coefficients replacing:
// Iterate using Taylor series 1ln(x) == 2(z + z”3/3 + z"5/5 ... )
for (i = 3;; i += 2, ++loopcnt)

z *= zs(q;
terms = z / float _precision(i);
if (logx + terms == logx)

break;
logx += terms;
}
With this:

std: :vector<float_precision> vn(group);
std: :vector<float _precision> cn(group);
int j, 1;

const int group=5;

// Calculate the next group z e.g. z"2, Z"4, z"6 etc.
for (i = 0; i < group; ++i)
{
vn[i].precision(precision);
cn[i].precision(precision);
if (i == @) vn[i] = zsq;
if (i > @) vn[i] = vn[i - 1] * zsq;

}

// Now iterate

for (1 = 3; ; )
{
// Calculate the new constant
for (j = @; j < group; ++3)

cn[j] = c1;
for (1 = ©; 1 < group; ++1)
if (7 !'= 1)

cn[j] *=1i + 2 * 1;

// Add the terms together
for (j = @, terms = @; j < group; ++j)
terms += cn[j] * vn[j];
terms *= z / (cn[@] * float precision(i, precision));

i+= 2 * group; // Update term count

loopcnt += group; // Update loop count

if (logx + terms == logx) // Reach precision
break; // yes terminate loop

logx += terms; // Add Taylor terms to result

if (group > 1)
z *= vn[group - 1]; // ajust z to last Taylor term in group

}

Log(x) using the Newton method
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This method is only relevant if you have a very fast way to compute e*. This usually is
the case since exp(x) is faster to calculate than In(x) when using arbitrary precision. The
method solves the equation x=In(y) by taking the exp() of both sides: exp(x) =y and then
solving it using the Newton method, which yields the iteration:

xn+1:xn_1+L (8)

eXn

Unfortunately, it will require a division; however, e* is more time-consuming to calculate
than a division so it does not matter in the big picture. The Newton method has a
quadratic convergence rate doubling the number of correct digits for each iteration. For
precision, less than 10,000 digits the Taylor series from the previous chapter is faster but
above 10,000 digits the Newton method exceeds the performance of the Taylor series. At
100,000 digits Newton’s method is approximately 40% faster than the Taylor series.

Source In_newton()
float_precision 1ln_newton(const float_precision& a)
{
const size t extra = 5;
const size t precision = a.precision() +
(size_t)ceil(logle(a.precision()))+extra;
const float precision c1(1);
size t digits, loopcnt = 1;
double fx;
float_precision r, x, y(a);

if (a <= float_precision(®))
{

throw float_precision::domain_error();

}

// Do iteration using guard digits with higher precision
y.precision(precision);
X.precision(precision);

// Get an initial guess using an ordinary floating point
fx = log((double)y);
x = float_precision(fx);

// Now iterate using Netwon x=x(1+y-1ln(x)) x=x-1+y/exp(x)
for (digits = std::min((size t)32, precision); ; digits =
std::min(precision, digits * 2), ++loopcnt)
{
// Increase precision by a factor of two for the working var. r & x.
r.precision(digits+extra);
X.precision(digits+extra);
r=-cl+y/ exp(x); // -cl+y/exp(x)
if (digits == precision)
{// Reach final iteration step in regards to precision

r.precision(digits + 2);

X.precision(digits + 2); // round to final precision
if (x + r == x ) // break if no improvement
break;
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// X=x-cl+y/exp(x)

X
+
I
=
-

// Reapply exponent, mode, and precision
x.mode(a.mode());
x.precision(a.precision() + 1);

return Xx;

}

Log(x) using the Halley method

Since the Newton method is faster than the Taylor series for precision above 10,000
digits it is interesting to check if the cubic convergence Halley method is even faster.
The Halley method with cubic convergence is:

y—e*n

(9)

Xnt1 = Xp +2 Sremm

The benefit is that you triple the number of correct digits per iteration versus Newton
double per iteration. The Halley method is indeed faster exceeding the Newton method
around a 1,000 digits precision and is approximately 8-10% faster than the Newton
Method.

Source In_halley/()
float _precision 1nEXP_halley deep(const float precision& a)

{

const size t extra = 5;

const size t precision = a.precision() + (size t)ceil(logl@(a.precision()))
+ extra;

const float_precision c1(1);

size t digits, loopcnt = 1;

double fx;

float_precision r, x, y(a);

if (a <= float_precision(®))
{

throw float_precision::domain_error();

}

// Do iteration using guard digits with higher precision
y.precision(precision);
X.precision(precision);

// Get an initial guess using an ordinary floating point
fx = log((double)y);
x = float_precision(fx);

// Now iterate using Halley x=x-2(exp(x)-y)/(exp(x)+y)
for (digits = std::min((size t)48, precision); ; digits =
std::min(precision, digits * 3), ++loopcnt)
{// Increase precision by factor two for the working variable r & x.

27 February 2023. www.hvks.com/Numerical/arbitrary precision.html Page 16




Fast Logarithm function for Arbitrary Precision number

r.precision(digits+extra);

X.precision(digits+extra);

r = exp(x); /] exp(x)

r=(y -r)/ (r+y); /1 r=(y-(exp(x))/(exp(x)+y)
r.adjustExponent(+1); J] #¥=2g

if (digits == precision)

{// Reach final iteration step in regards to precision
r.precision(digits+2);
X.precision(digits+2);

if (x + r == x) // break if no improvement
break;
}
+= r; // x=x+2(y-exp(x))/(exp(x)+y)

X
}

// Reapply exponent, mode, and precision

x.mode(a.mode());

x.precision(a.precision() + 1);

return x;

}

Log(x) using the AGM method

The AGM method is the method that has the best asymptotic performance of all the
methods. It was found around 1975 and is described in the Yacas [5]:

4 1
51—

In (x) ( 10)

In(x) =m - x 2-AGM (x,4)

It looks more complex than any of the other methods but the trick is to observe that if x is
“large enough” then the numerator is one. For a given precision “large enough” mean

that );iz < 107P,where p is the wanted precision. In case x is not “large enough” we

need to multiply it with 2°. (Which is argument expansion and not argument reduction as
we are used to) Since we expand the argument with a factor of 2° we would need to
subtract it after the AGM method with s - In (2):

In(x) = In(2°x) — s -In (2) (11)
For a given precision, P, s is found using the below formula:

In (10) . In (x)

=P ) +1 In (2) (12)
With all components in place, we can now devise our AGM algorithm:
yS—2
In(x) = In(25x) — s - In(2) = —— —s-In(2),for x> 1 (13)

2:AGM (x572,1)
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If x<1 then we use the identity In(x) = —In (i) and use the AGM algorithm with 1/x.

Even though we are using two arbitrary precision constants, © and In(2) that needs to be
calculated to the same precision, P and we need to perform approximately 2 r}%
iterations to calculate the AGM value the method outperformed any of the other methods
presented here for precision exceeding approximately 4,000 digits. See the log(x)

performance chart.

AGM Algorithm

The arithmetic-geometric mean algorithm is defined as two positive numbers x & y by
the following algorithm AGM(x,y)=lim x,, = lim y,.
n—-oo n—->oo

AGM(x,y)
do—X
g0=y
iterate:
1
Apt1 = 2 (an + gn)
In+1 = +/ Andn
Until an+1=gn+1
return an+1

Algorithm 1

In arbitrary precision, the source would look like this:

Source AGM()
float_precision AGM(const float precision a, const float precision b)
{
const int guard = 0;
size t precision = std::max(a.precision(), b.precision())+guard;
size_t loopcnt;
float precision x(a), y(b), xnew(a), ynew(b);
float_precision diff;

X.precision(precision);
y.precision(precision);
xnew.precision(precision);
ynew.precision(precision);
for (loopcnt=1;;++loopcnt)

{

xnew = 0.5%(x + y);

ynew = sqrt(x*y);

diff = xnew - ynew;

if (diff.iszero() || xnew==x|]|ynew==y)
break;

X = Xnew;

y = ynew;

}
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xnew.precision(precision - guard);
return xnew;

}

Source In_AGM()
float_precision 1nAGM(const float_precision& x)

{

const size t guard = 5;

const size t precision = x.precision() +
(size_t)ceil(logle(x.precision()))+guard;

const uintmax_ t s = (uintmax_t)ceil(precision*log(10) / (2 * log(2)) + 1 -
log((double)x) / log(2));

// slost is loss of precision

const uintmax_t slost = (uintmax_t)ceil(log((double)s) / log(10.0));

const float precision c1(1);

float precision logx, z(x), agm;

if (x <= float_precision(9))
{

throw float_precision::domain_error();

}

// Adjust to working precision
agm.precision(precision);
logx.precision(precision);
z.precision(precision);

if(z < cl1)
z=1/2z; // Now z >= 1

logx = _float_table( PI, precision);

z.adjustExponent(s-2); //z=x"(s-2)

logx *= z; //PI*x"(s-2)

agm = AGM(z, 1);

agm.adjustExponent (+1); //2*AGM

logx /= agm; //(PI*x”~(s-2))/(2*AGM)

// Increase precision to avoid loss of significant

// when subtracting two large numbers

logx.precision(precision + slost);

logx -= float precision(s,precision+slost) *_float_table(_ LN2,
precision+slost);

// Round to the same precision as argument and rounding mode
if (x < c1)
logx.change_sign();
logx.mode(x.mode());
logx.precision(x.precision());
return logx;

}
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Log(x) performance

Log Performance
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Figure 1

Based on the performance chart Taylor series log is the fastest up to approximately 4,000
digits whereas, after the log, AGM becomes the fastest in both the threaded and non-
threaded versions. Above 10,000 digits, the Newton and Halley method also exceeds the
performance of the Taylor series version.

Log(x) using the AGM method and multiple threads

The AGM method lends itself to being implemented using threads. There are three basic
components of the AGM method.

e (Calculating the constant &
e Calculating the constant In(2)
e Calculating the AGM value
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These three calculations can run in parallel in separate threads with a few simple changes
to the source code using C++ lambda functions.

The threaded version of InAGM becomes:

Threaded InAGM() source
float_precision logAGMThread(const float_precision& x)

{

const size t guard = 5;

const size t precision = x.precision() + (size_t)ceil(logl@(x.precision()))
+ guard;

const uintmax t s = (uintmax_t)ceil(precision*1log(10) / (2 * log(2)) + 1 -
log((double)x) / log(2));

const uintmax_t slost = (uintmax t)ceil(log((double)s) / log(10.0)); //
Loss of precision

const float precision c1(1);

float precision logx, z(x), agm, 1ln2;

if (x <= float_precision(9))
{

throw float_precision::domain_error();

}

// Adjust to working precision
agm.precision(precision);
logx.precision(precision);
z.precision(precision);
1n2.precision(precision);

if (z < c1)
z =1/ z; // Now z >= 1
z.adjustExponent(s - 2); /] z/=4

// First thread calculates PI
std: :thread first([=, &logx]()
{ logx = _float_table(_PI, precision); });
// Second thread calculate 1n(2)
std: :thread second([=, &ln2]()
{ 1n2=_float_table(_LN2, precision + slost); });
// Third thread calculate AGM(z,1)
std: :thread third([=, &agm, &z]()
{ agm = AGM(z,1);
agm.adjustExponent(+1); //2*AGM
1)
// Wait for threads 1 & 3 to finish
first.join();
third.join();

logx *= z; //PI*x"(s-2)
logx /= agm; // PI*x”(s-2)/AGM

// Wait for 1n(2) thread to finish

second.join();

// Increase precision to avoid loss of significance when subtracting two
large numbers

logx.precision(precision + slost);
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logx -= float_precision(s, precision + slost) * 1n2;

// Round to the same precision as argument and rounding mode
if (x < c1)
logx.change_sign();
logx.mode(x.mode());
logx.precision(x.precision());
return logx;

}

Recommendation for calculating log(x)

Based on the performance measure of the various In() methods recommend:

e Ln(x) using Taylor series with argument reduction and coefficient scaling for
precision up to approx. 4,000 digits.

e [fthe AGM method is available then use it above 4,000 digits.

o Moreover, use AGM in a multi-threaded version to increase performance.

e [f the AGM method is not available then use either the Newton method or the
better Halley method when precision exceeds 10,000 digits.

e Always use argument reduction to increase performance

e Coefficient scaling (or grouping of terms) can speed up calculation by a factor of
two-three and is therefore recommended.
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